Reprinted from Acta Crystallographica, Vol. B 25, Part 5, May 1969

PRINTED IN DENMARK

Acta Cryst. (1969). B25, 1001

Crystal data of two high pressure phases of SrB₂O₄. By P. D. DERNIER, Bell Telephone Laboratories, Inc., Murray Hill, New Jersey, U.S.A.

(Received 8 October 1968)

SrB₂O₄(III) and SrB₂O₄(IV) are two high pressure phases of strontium metaborate. Polycrystalline SrB₂O₄(III) was prepared at 15 kbar and 600 °C. It is orthorhombic, with $a=12\cdot426\pm0.002$, $b=6\cdot418\pm0.001$ and $c=11\cdot412\pm0.002$ Å, Z=12, $d_c=3\cdot77$ g.cm⁻³, symmetry *Pna*₂, and is isostructural with CaB₂O₄(III). SrB₂O₄(IV), formed at 20 kbar and 600 °C, is cubic, with $a=9\cdot222\pm0.001$ Å, Z=12, $d_c=4\cdot38$ g.cm⁻³, space group symmetry *Pa*₃, and is isostructural with CaB₂O₄(IV). In general the behavior of SrB₂O₄ under pressure is very similar to that of CaB₂O₄.

Introduction

This paper reports the synthesis and crystal data of two new high pressure phases of strontium metaborate. At atmospheric pressure SrB_2O_4 is isostructural with $CaB_2O_4(I)$ (Block, Perloff & Weir, 1964). The latter compound is orthorhombic with all boron atoms triangularly coordinated and the calcium atoms surrounded by eight-oxygen polyhedra. Since the polymorphism of SrB_2O_4 is similar to that of CaB_2O_4 , all modifications of SrB_2O_4 will be designated in the same fashion as their isostructural CaB_2O_4 counterparts. (Marezio, Remeika, & Dernier, 1969a).

Synthesis

The high pressure apparatus and experimental procedures were the same as has been previously described in the synthesis of the high pressure modifications of CaB₂O₄ (Marezio *et al.* 1969 *a, b*). However, the pressure and temperature conditions were significantly lower for each of the respective high pressure phases of SrB₂O₄. SrB₂O₄(III) was retained metastably after pressurizing SrB₂O₄(I) to 15 kbar and raising the temperature to 600 °C for a one hour period. The synthesis of SrB₂O₄(IV) required a pressure of 20 kbar and a temperature of 600 °C. Further increases of pressure above 40 kbar resulted in the decomposition of SrB₂O₄. One product of decomposition was found to be SrB_4O_7 (Krogh-Moe, 1964), as identified by X-ray powder photographs and precession films.

Both $SrB_2O_4(III)$ and $SrB_2O_4(IV)$ could be reconverted to the low pressure starting material, $SrB_2O_4(I)$, by annealing overnight at 750°C in air. X-ray powder films of the annealed SrB_2O_4 and unpressurized SrB_2O_4 were identical. In addition, single crystals of both high pressure modifications were grown at a pressure of 15 kbar and a temperature of 600°C with water as a solvent. The crystals were easily identified and separated under a crossed polarized field of light, since the crystals of $SrB_2O_4(III)$ were birefringent whereas those of $SrB_2O_4(IV)$ were isotropic. It should be noted that the presence of water apparently lowered the pressure range of stability of $SrB_2O_4(IV)$. This phenomenon has been observed previously for several other systems but no *a priori* justification can be proposed at this time.

Crystal data

From precession photographs taken with Mo $K\alpha$ radiation SrB₂O₄(III) was found to be orthorhombic with systematic absences for 0kl, k+l=2n+1, and for h0l, h=2n+1. These are identical with the conditions found for CaB₂O₄(III) (Marezio, Remeika & Dernier, 1969a). The correct space group for CaB₂O₄(III) was found to be *Pna*2₁ and it is highly probable that it is the same for SrB₂O₄(III). The lattice parameters for SrB₂O₄(III) were

1150-90

determined from a powder film taken at room temperature and atmospheric pressure with a Norelco Camera of 114.6 cm diameter and Cr Ka (2.2909 Å) radiation. The parameters were refined by the least-squares program of Mueller, Heaton & Miller (1960). The final refined parameters are $a=12.426\pm0.002$, $b=6.418\pm0.001$ and $c=11.412\pm0.002$ Å. The calculated density based on 12 molecules per unit cell is 3.77 g.cm⁻³. A comparison of observed and calculated interplanar spacings is given in Table 1.

Table 1	. Powder	pattern of	SrB ₂ O ₄ (III)

hkl	dobs	deale	I
202	4.177	{ 4·202	m
211	2 500	(4.15/	
212	3.209	3.210	m
311	3.325	3.329	m
113	3.163	3.164	m
120	3.092	J 3·107	m
400	5 072	3.107	
121	2.007	£ 2·998	S
401	2.991	2.997	
004	2.849	2.853	ms
204	2.587	2.593	m
114	2.548	2.551	m
412	2.509	2.511	m
214	2.401	2.404	10
222	2 401	(2.219	W
510	2.323	2.310	W
510	0.1.40	2.510	
205	2.140	2.142	m
115	2.116	2.119	W
404	2.089	2.101	W
124	2005	L 2·101	
131	2.064	\$ 2.073	W
600	2.004	2.071	
224	2.005	2.017	m
231	1 000	[1.992	m
414	1.992	1 1.997	1
513	1.975	1.979	m
610	1.967	1.971	
611	1.038	1.042	111
006	1.900	1.002	W
221	1.076	1.975	ms
122	1.9/0	1.944	W
135	1.045	1.044	m
200	1.810	1.019	W
514	1.196	1.799	W
613	1.749	1.750	W
216		1.750	
710	1.708	1.711	W
026	1.636	1.636	W
326	1.521	1.522	W
810	1.508	1.509	W
606	1.400	1.400	wm
517	1.333	1.333	wm
805	1.284	1.284	m
726	1.203	1.203	m
825	1.192	1.192	m
346	1.176	1.176	110
540	1.110	1.1.10	m

A powder film of SrB₂O₄(IV) taken with Cu $K\alpha$ (1.5418Å) radiation at room temperature and atmospheric pressure, was indexed on a cubic cell with a lattice parameter of approximately 9.2 Å. From a comparison with a powder film of the cubic phase CaB2O4(IV) (Marezio, Remeika & Dernier 1969b) it appears that SrB₂O₄(IV) is isostructural with CaB₂O₄(IV). The powder data of the former compound are given in Table 2. The final refined lattice parameter for SrB₂O₄(IV) was $a = 9.222 \pm 0.001$ Å, as obtained by the previously mentioned least-squares program. The calculated density based on 12 molecules per unit cell is 4.38 g.cm-3.

Table 2. Powder pattern of SrB₂O₄(IV)

$h^2 + k^2 + l^2$	dobs	deale	I
5	4.118	4.124	m
6	3.747	3.765	wm
8	3.249	3.261	w
9	3.074	3.074	w
11	2.774	2.781	S
12	2.658	2.662	vw
13	2.552	2.558	m
14	2.457	2.465	m
16	2.296	2.306	w
17	2.226	2.236	w
18			
19	2.050	2.002	
20	2.000	2.062	m
21	1.050	1.066	ms
24	1.877	1.900	m
27	1.771	1.775	W
29	1.709	1.713	wm
30	1.680	1.684	m
32	1.628	1.630	m
33		1 000	
34	1.579	1.581	w
35		NOT TOUT	20x1) an
36	1.535	1.537	wm
38	1.494	1.496	m
40	1.456	1.458	UW
43	1.404	1.406	m
44	1.389	1.390	vw
45	1.373	1.375	m
46	1.359	1.360	m
48	1.000	1.0.0	
53	1.266	1.267	m
54	1.233	1.235	m
57	1.230	1.232	m
59	1.100	1.201	me
61	1.179	1.181	Ins
62	1.170	1.171	wm
64	1.152	1.153	w
69	1.108	1.110	W
70	1.101	1.102	W
75	1.064	1.065	m
77	1.050	1.051	w
78	1.043	1.044	W
84	1.006	1.006	W
85	1.000	1.000	W
86	0.9933	0.9944	wm
91	0.9662	0.9667	W
94	0.9302	0.9512	W
90	0.9404	0.9412	m
101	0.9107	0.91/0	m
104	0.8011	0.9045	W
107	0.8827	0.8833	111
110	0.8786	0.8793	m
116	0.8556	0.8562	111
117	0.8519	0.8526	W
118	0.8484	0.8490	w
123	0.8312	0.8315	m
125	0.8245	0.8249	m
126	0.8212	0.8216	m
128	0.8148	0.8151	W
133	0.7995	0.7997	w
134	0.7964	0.7967	m
136	0.7906	0.7908	UW
139	0.7821	0.7822	m
141	0.7766	0.7766	m

SHORT COMMUNICATIONS

Table 3. Polymorphism of SrB₂O₄ and CaB₂O₄

	Approximate range of stability*		Density (g.cm ⁻³)			Lattice parameters (Å)	
Fhase	SrB_2O_4	CaB_2O_4	SrB_2O_4	CaB_2O_4	Symmetry	SrB_2O_4	CaB ₂ O ₄
Ι	0–8 kbar	0–12 kbar	3.33	2.70	Orthorhombic	a = 6.589 b = 12.018 c = 4.337	a = 6.214 b = 11.604 c = 4.285
Π	-	12–15 kbar	_	2.89	Orthorhombic		a = 8.369 b = 13.816 c = 5.007
III	8–15 kbar	15–25 kbar	3.77	3.05	Orthorhombic	a = 12.426 b = 6.418 c = 11.412	a = 11.380 b = 6.382 c = 11.304
IV	15–40 kbar	25–40 kbar	4.38	3.43	Cubic	<i>a</i> = 9·222	<i>a</i> = 9.008

* Temperature = $600 \degree C$ for SrB₂O₄ and $900 \degree C$ for CaB₂O₄.

Discussion

For ease of comparison between the SrB_2O_4 and CaB_2O_4 polymorphic series, crystal data and pressure ranges of stability are given in Table 3, and a plot of densities *versus* fraction of tetrahedral boron can be found in Fig.1. It can be seen from Table 3 as well as from Fig.1 that the behavior of SrB_2O_4 under pressure is very similar to that of CaB_2O_4 .

One notable difference in the two polymorphic series is that an expected phase of SrB₂O₄ is missing, namely, SrB₂O₄(II). It could be predicted from the data in Table 3 that this phase should exist at 6-8 kbar and 600°C. By further extrapolation of densities (see Fig.1) and analogy to CaB₂O₄(II) (Zachariasen, 1967) one would expect this modification to be orthorhombic with a density of 3.6 g.cm⁻³, a unit-cell volume of 650 Å³, and very roughly, lattice parameters a=8.9, b=14.3, and c=5.1 Å. However, after considerable experimentation not a trace of SrB₂O₄(II) could be detected in any of the X-ray powder films of the high pressure samples. It should be noted that CaB₂O₄(II) was never obtained in the pure state from high pressure experiments at these laboratories. Instead, CaB₂O₄(II) was always found as a mixture with CaB₂O₄(I) or CaB₂O₄(III). It seems reasonable to expect the pressure range of stability for SrB₂O₄(II) to be narrower than CaB₂O₄(II). From Table

Fig. 1.

3 and from the known coordination changes for CaB_2O_4 the implication is that the energy associated with the transition $I \rightarrow II$ should be about the same for both compounds since only the boron coordination is changing. However, for the transition II \rightarrow III both cation coordinations are increasing and the energy required for this transition should be less for SrB₂O₄ than for CaB₂O₄.

In general it can be seen from Table 3 that considerably less energy is required, for each of the respective transitions, for SrB_2O_4 than for CaB_2O_4 . Less energy is necessary to increase the strontium coordination than the calcium coordination since Sr is larger than Ca in ionic radius and is more easily accomodated in a larger lattice site. One would expect even lower energies for similar transitions for BaB_2O_4 . However, preliminary experiments with BaB_2O_4 show that high pressure phases of this compound are not isostructural with any of the SrB_2O_4 phases.

Finally, a comparison of lattice parameters between isostructural compounds in Table 3 shows that for phase III a unique distortion of the unit cell occurs when strontium is substituted for calcium. Whereas the lattice parameters a_0 for SrB₂O₄(III) is 9.2% larger than the corresponding parameter of CaB₂O₄(III), the lattice parameters b_0 and c_0 are only 0.6% and 1.0% larger respectively. It is difficult to explain this unidirectional expansion without a knowledge of the structural details of SrB₂O₄(III). Nevertheless, it can be speculated that second-nearest neighbor interactions in CaB₂O₄(III) could become first-nearest neighbor interactions in SrB₂O₄(III).

The author would especially like to thank M. Marezio and J. P. Remeika for valuable suggestions and discussions concerning this project.

References

- BLOCK, S., PERLOFF, A. & WEIR, C. E. (1964). Acta Cryst. 17, 314.
- KROGH-MOE, J. (1964). Acta Chem. Scand. 18, 2055.
- MAREZIO, M., REMEIKA, J. P. & DERNIER, P. D. (1969a). Acta Cryst. B25, 955.
- MAREZIO, M., REMEIKA, J. P. & DERNIER, P. D. (1969b). Acta Cryst. B25, 965.
- MUELLER, M. H., HEATON, L. & MILLER, R. T. (1960). Acta Cryst. 13, 828.
- ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 44.